

Dimatix Materials Printer DMP-2831

System Description

- Flat substrate, xyz stage, inkjet deposition system
- · Low cost, user-fillable plezo-based inkiet print cartridges
- · Built-In drop jetting observation system
- Fiducial camera for substrate alignment and measurement.
- · Variable jetting resolution and pattern creation PC-controlled with Graphical User Interface (GUI) application software
- · Cepable of letting a wide range of fluids
- Heated vacuum platen
- · Cartridge cleaning station
- Includes PC, monitor, and software

Mechanical System

- · Printable area
 - Substrate < 0.5 mm thickness: 210 mm x 315 mm (8.27 in x 12.4 in)
 - Substrate 0.5 25 mm thickness: 210 mm x 260 mm (8.27 ln x 10.2 ln)
- Repeatability: ± 25 µm (± 0.001 in)
- Substrate holder
 - Vacuum platen
 - Temperature adjustable; ambient to 60° C
- System Footprint: 673 mm x 584 mm x 419 mm (26 in x 23 in x 16 in)
- Weight approximately 43 kg (95 lbs)
 Power 100-120/200-240 VAC 50/60 Hz 375 W maximum
- Operating range 15-40° C at 5-80% RH non-condensing
- Altitude up to 2000 m
- Safety and EMC compliance
 - Safety: NRTL Certified to EN 61010-1, UL 61010-1, CSA 22.2 No. 61010-1
 - EMC: EN61326-1 Class A, FCC Part 15 Class A

Fiducial Camera

- · Allows substrate alignment using reference marks
- · Allows positioning a print origin or reference point to match substrate placement
- · Provides measurement of features and locations
- · Provides inspection and image capture of printed pattern or drops
- · Provides cartridge alignment when using multiple cartridges
- · Allows matching drop placement to previously patterned substrate

Cartridge

- Type: Piezo-driven jetting device with integrated reservoir and heater
- Usable Ink Capacity: Up to 1.5 ml (user-fillable)
- Materials Compatibility: Many water-based, solvent, acidic or basic fluids
- Number of Nozzles: 16 nozzles, 254 µm spacing, single row
- Drop Volume: 1 (DMC-11601) and 10 (DMC-11610) picoliter nominal

Control PC and Application Software

- · Pre-loaded patterned templates
- Pattern preview
- · Editors: Pattern, piezo drive waveform, cleaning cycle, substrate setting
- · Bitmap (1 bit) files accepted
- DXF, Gerber, GDSII and OASIS file conversion to Bitmap

Drop Watcher View

Replaceable Items

- · Print cartridge with one-time user-fillable reservoir
- · Cleaning station nozzle blotting pad
- · Drop watcher fluid absorbing pad

Materials Printer & Cartridges DMP-2831 & DMC-11601/11610

Datasheet

System Description

- O Flat substrate, xyz stage, "ink jet" deposition system
- O Low cost, user-fillable piezo-based ink jet print cartridges
- O Built-in drop jetting observation system
- O Fiducial camera for substrate alignment and measurement
- O Variable jetting resolution and pattern creation PC-controlled with Graphical User Interface (GUI) application software
- O Capable of jetting a wide range of fluids
- O Heated vacuum platen
- O Cartridge cleaning station
- O Includes PC, monitor, and software

Mechanical System

- O Printable area
 - Substrate < 0.5 mm thickness: 210 mm x 315 mm (8.27 in x 12.4 in)
 - Substrate 0.5 25 mm thickness: 210 mm x 260 mm (8.27 in x 10.2 in)
- O Repeatability: ± 25 µm (± 0.001 in)
- O Substrate holder
 - Vacuum platen
 - Temperature adjustable; ambient to 60°C
- O System Footprint: 673 mm x 584 mm x 419 mm (26 in x 23 in x 16 in)
- O Weight approximately 43 kg (95 lbs)
- O Power 100-120/200-240 VAC 50/60 Hz 375 W maximum
- O Operating range 15-40°C at 5-80% RH non-condensing
- O Altitude up to 2000 m
- O Safety and EMC compliance
 - Safety: NRTL Certified to EN 61010-1, UL 61010-1, CSA 22.2 No. 61010-1
 - EMC: EN61326-1 Class A, FCC Part 15 Class A

Fiducial Camera

- O Allows substrate alignment using reference marks
- O Allows positioning a print origin or reference point to match substrate placement
- O Provides measurement of features and locations
- O Provides inspection and image capture of printed pattern or drops
- O Provides cartridge alignment when using multiple cartridges
- O Allows matching drop placement to previously patterned substrate

Cartridge

- Piezo-driven jetting device with integrated reservoir and heater O Type:
- O Usable Ink Capacity: Up to 1.5 ml (user-fillable)
- O Materials Compatibility: Many water-based, solvent, acidic or basic fluids
- 16 nozzles, 254 µm spacing, single row O Number of Nozzles:
- O Drop Volume: 1 (DMC-11601) and 10 (DMC-11610) picoliter nominal

Control PC and Application Software

- O Pre-loaded patterned templates
- O Pattern preview
- O Editors: Pattern, piezo drive waveform, cleaning cycle, substrate setting
- O Bitmap (1 bit) files accepted
- O DXF, Gerber, GDSII and OASIS file conversion to Bitmap

Replaceable Items

user-fillable reservoir

O Cleaning station nozzle blotting pad

O Drop watcher fluid absorbing pad

Drop Watcher View

Dimatix Materials Printer Selector Guide

200 x 300 mm	DMP-3000	DMP-5000		
NA 127 / 194 (DMP-5005	ATTAIBUTES
N/A	300 x 300 mm	500 x 500 mm	600 x 500 mm	Vacuum controlled substrate handling placement for accurate registration, up to 60°C lucated platen, theta rotation for substrate alignment.
	±5 mlcrons	±5 mlcrons	±5 mlcrons	
±25 mlcrons	±1 microns	±1 mlcrons	±1 microns	
l	1	1	1	Droplet images dynamically captured for printhead tuning and waveform development.
l	1	1	1	Allows substrate alignment, measurement of features and feature location.
	1	L	1	Facilitates auto printhead alignment.
	PRINTHEADS	SUPPORTED		
L	L	4	1	16-jet, 1 picoliter silicon MEMS snap-in printhead with user fillable cartridge. Shares physical features with the DMC 10 picoliters allowing easy interchangeability. Features as small as 20 microns can be deposited.
1	1	4	~	16-jet, 10 picoliters silicon MEMS snap-in printhead with user fillable cartridge. Shares physical features with the DMC 1 picoliter allowing easy interchangeability.
	4	~	~	128-inline jets, 1 picoliter silicon MEMS production printhead with Integrated cooling and driver-per-nozzle and trimming capability. Shares identical physical features with D-128 10 picoliters allowing easy interchangeability.
	4	4	4	128 inline-jets, 10 picoliters silicon MEMS production printhead with integrated cooling and driver-per-nozzle and trimming capability. Shares identical physical features with D-128 1 picoliter allowing easy interchangeability.
-11	~	1		128-inline tunable jets with 8 picoliters calibrated drop size. Hybrid silicon carbon construction. Has silicon nozzle plate with non-wetting coating.
	1	~		128 Inline tunable jets with 30 picoliters calibrated drop size. Hybrid silicon carbon construction. Has an electroformed nickel-gold nozzle plate.
	1	1		128 inline tunable jets with 35 picoliters calibrated drop size. Hybrid silicon carbon construction. Has silicon nozzle plate with non-wetting coating.
Product Use: Small footprint, laboratory development tool for fluids, process and small format sample generation.	Product Use: Larger format, high accuracy floor standing system for process, fluids and low volume prototype generation.	Product Use: Largest format, high accuracy floor standing system for process, fluids and low volume prototype generation.	Product Use: Largest format, high accuracy floor standing system for production volume manufacturing.	
Special Features: • Simple to use and operate • Tabletop device • Does not require special site-holder improvements	Special Features: UV cure lamp option Manual or automatic filling of fluid reservoir	Special Features: • UV cure lamp option • Manual or automatic filling of fluid reservoir • Optional HEPA filter	Special Features: • Support up to 5 printheads • Optional HEPA filter	See other side for Materials Deposition Printheads 🦠
	Product Use: Small footprint, laboratory development tool for fluids, process and small format sample generation. Special Features: • Simple to use and operate • Tabletop device • Does not require	#25 mlcrons #1 mlcrons #2 #25 mlcrons #2 #25 mlcrons #3 #25 mlcrons #4 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2	#25 mlcrons #1 ml	### All microns ### All micron

Rev 00 01/17/11

Materials Deposition Printheads

			V	V			
OPERATING PARAMETERS	DMC-11601	DMC-11610	D-128/1 DPN	D-128/10 DPN	SX3	SE-DPN	SE3
Individual tunable nozzles	1	1	1	1	1	1	1
Nozzle plate	Silicon with non-wetting coating	Silicon with non-wetting coating	Silicon with non-wetting coating	Sillcon with non-wetting coating	Silicon with non-wetting coating	Electroformed nickel-gold plated	Silicon with non-wetting coating
Nozzlo spacing (microns)	254	254	254	254	508	508	508
Nozzle diameter (microns)	9	21	9	21	19	35	42
Calibrated drop size (picoliters)	1	10	1	10	8	30	35
Adjustment drop size rengo (picoliters)	Fixed	Fixed	Fixed	Fixed	8-10	25 - 30	30 - 40
Maximum operating frequency (kHz)	15	20	15	20	10	40	15

DMP-5000 Cartridges & Printheads

Printheads/Operating Parameters tunable		individual tunabla nozzlas	Nozzla plato	Nozzle dlamater (microne)	Calibrated drop size (picolitere)	Adjustment drop size ranga (pisolitera)	Maximum operating frequency (kHz)
	DMC-11601	1	Silicon will non-wetting conting	0	1	± 20%	15
	DMC-11610	1	Sillcon with non-wetting coating	21	10	± 20%	60
	D-128/1 DPN	L	Silicon with non-wetting coating	9	ı	± 20%	15
\	D-128/10 DPN	L	Silicon with non-wetting coating	21	10	± 20%	20
	SX3	l	Sillcon with non-wetting coating	19	8	8 - 10	10
	SE3	1	Silicon with non-wetting coating	42	35	30 - 40	15
	SE-DPN	1	Electroformed nickel-gold	35	30	25-30	40
	QS-256/10 AAA	1	Silicon	22	10	10-30	50
	QS-256/30 AAA	1	Silicon	31	30	30 - 80	33
1	QS-256/80 AAA	1	Silicon	43	80	80 - 200	20
	QE-256/30 AAA	1	Electroformed nickel-gold	31	30	30 - 80	33
	QE-256/80 AAA	1	Electroformed nickel-gold	43	80	80 - 200	20

深圳市现代豪方仪器仪表科技有限公司 电话/微信:1339286394

Materials Printer DMP-5000

Datasheet

System Description

- O XYZ stage, inkjet deposition system
- O User-fillable piezoelectric inkjet print certridges and printheads
- O Bullt-in drop watcher camera system for jetting analysis
- O Fiducial camera for substrate alignment and measurement
- O Variable printing resolution
- O PC-controlled with graphical user interface (GUI) application software
- O Wide range of fluid compatibilities
- O Heated vacuum platen
- O Printhead maintenance and cleaning station
- O Includes PC, monitor and software

Mechanical System

- O Printable parameters
 - Printable area: 500 x 500 mm
 - Substrate up to 30 mm thickness
 - System positional accuracy: ± 5 µm
 - Repeatability: ± 1 µm
- O Substrate holder
 - Vacuum platen
 - Temperature adjustable; ambient to 60°C
- O System footprint: 1.9 x 1.8 x 2.0 m

- O Weight approximately 2100 kg
 O Power 200-240 VAC 50/60 Hz, 1.5 kW maximum
 O Operating range 15-30°C at 5-80% RH non-condensing
- O Operates at altitudes up to 2000 m
- O Safety and EMC compliant: CE/FCC/UL/RoHS/WEEE

Fiducial Camera

- O Allows substrate alignment using reference marks
- O Allows print origin or reference point positioning to match substrate placement
- O Provides feature location and measurement
- O Provides post-print pattern inspection and image capture

Cartridges

- O Piezoelectric jetting device with integrated reservoir and heater
- 1.5 ml fluid capacity
- Broad materials compatibility
 Number of Nozzles: 16 nozzles, 254 µm spacing, single row
- O Drop Volume: 1 (DMC-11601) and 10 (DMC-11610) picoliter nominal

Printheads

- O SX3, SE3 and SE-DPN
- O D-128/1 DPN and D-128/10 DPN
- O QS-256/10 AAA, QS-256/30 AAA, QS-256/80 AAA QE-256/30 AAA, QE-256/80 AAA

Control PC and Application Software

- O Pre-loaded patterned templates
- O Pattern preview
- O Editors: Waveform and cleaning cycle
- O Bitmap files accepted
- O DXF, Gerber, GDSII and OASIS file conversion to Bitmap software

Dimatix

- O Print cartridge with one-time user-fillable reservoir
- O SX3, SE3 and SE-DPN
- O D-128/1 DPN and D-128/10 DPN
- O QS-256/10 AAA, QS-256/30 AAA, QS-256/80 AAA QE-256/30 AAA, QE-256/80 AAA
- O Nozzle blotting material for cleaning station

Dimatix Materials Printing System

...BUILDING PRODUCTS ONE DROP AT A TIME

FUJ!FILM

Dimatix Materials Printing System

Dimatix Materials Printer

- Laboratory benchtop digital inkjet printing system
- MEMS-based interchangeable cartridge
- Precision XYZ motion control

Features

- Printing area approximately 200 mm x 300 mm (8 in x 12 in) with an adjustable Z height
- Print any pattern at 5 254 μm dot pitch (100 - 5080 dpi)
- Wide fluid compatibility/capability
- Substrates up to 25 mm thick
- Repeatability ± 25 µm (± 0.001 in)
- Heated vacuum table for rigid or flexible substrates
- Pre-loaded patterns, cleaning cycles and jetting waveforms or create your own
- Fiducial camera for alignment and inspection
- System footprint 673 mm x 584 mm x 419 mm (26 in x 23 in x 16 in)

- Weight approximately 43 kg (95 lbs)
- Power 100-120/200-240 VAC 50/60 Hz 375 W maximum
- Operating temperature range 15-40° C
- PC-user interface with monitor
- Software driver and printer applications including software pattern generator and Bitmap file import
- DXF, Gerber, GDSII and OASIS file conversion to Bitmap

Benefits

- · Self contained ready-to-go system
- Non-contact fluid deposition
- User-fillable up to 1.5 ml, interchangeable, disposable cartridge
- · User-variable drop size and drop density

Dimatix Materials Cartridge

- · Easy snap-in cartridge
- 1.5 ml capacity syringe fillable cartridge
- 16 nozzles, 254 µm spacing
- Tunable jetting parameters for many solvents, aqueous solutions, UV curing fluids, etc.
- Fluid temperature control up to 70° C for controlled jetting of viscous fluids

Benefits

- · Easy to use
- · Fill with your own fluids
- · Minimum material waste
- Excellent fluid compatibility

